Soft-LOST: EM on a Mixture of Oriented Lines
نویسندگان
چکیده
Robust clustering of data into overlapping linear subspaces is a common problem. Here we consider one-dimensional subspaces that cross the origin. This problem arises in blind source separation, where the subspaces correspond directly to columns of a mixing matrix. We present an algorithm that identifies these subspaces using an EM procedure, where the E-step calculates posterior probabilities assigning data points to lines and M-step repositions the lines to match the points assigned to them. This method, combined with a transformation into a sparse domain and an L1-norm optimisation, constitutes a blind source separation algorithm for the under-determined case.
منابع مشابه
Gaussian Mixture Models For Extraction Of Melodic Lines From Audio Recordings
The presented study deals with extraction of melodic line(s) from polyphonic audio recordings. We base our work on the use of expectation maximization algorithm, which is employed in a two-step procedure that finds melodic lines in audio signals. In the first step, EM is used to find regions in the signal with strong and stable pitch (melodic fragments). In the second step, these fragments are ...
متن کاملDocument Classification Using a Finite Mixture Model
We propose a new method of classifying documents into categories. We define for each category a finite mixture model based on soft clustering of words. We treat the problem of classifying documents as that of conducting statistical hypothesis testing over finite mixture models, and employ the EM algorithm to efficiently estimate parameters in a finite mixture model. Experimental results indicat...
متن کاملExpectation-maximization algorithms for learning a finite mixture of univariate survival time distributions from partially specified class values
Heterogeneity exists on a data set when samples from different classes are merged into the data set. Finite mixture models can be used to represent a survival time distribution on heterogeneous patient group by the proportions of each class and by the survival time distribution within each class as well. The heterogeneous data set cannot be explicitly decomposed to homogeneous subgroups unless ...
متن کاملThe Expectation Maximization Algorithm: A short tutorial
This tutorial discusses the Expectation Maximization (EM) algorithm of Dempster, Laird and Rubin [1]. The approach taken follows that of an unpublished note by Stuart Russel, but fleshes out some of the gory details. In order to ensure that the presentation is reasonably self-contained, some of the results on which the derivation of the algorithm is based are presented prior to the main results...
متن کاملThermal Diffusion Factor in Gas Mixture-Dufour Effect (I)
The thermal diffusion factor, aT, for a binary gas mixture is calculated on the basis of nonequilibrium thermodynamics. A new formula for aT is derived and this factor is given for several paris of gases according to this formula.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004